Intersection Graphs of Rays and Grounded Segments
نویسندگان
چکیده
We consider several classes of intersection graphs of line segments in the plane and prove new equality and separation results between those classes. In particular, we show that: • intersection graphs of grounded segments and intersection graphs of downward rays form the same graph class, • not every intersection graph of rays is an intersection graph of downward rays, and • not every intersection graph of rays is an outer segment graph. The first result answers an open problem posed by Cabello and Jejčič. The third result confirms a conjecture by Cabello. We thereby completely elucidate the remaining open questions on the containment relations between these classes of segment graphs. We further characterize the complexity of the recognition problems for the classes of outer segment, grounded segment, and ray intersection graphs. We prove that these recognition problems are complete for the existential theory of the reals. This holds even if a 1-string realization is given as additional input.
منابع مشابه
Coloring intersection graphs of x-monotone curves in the plane
A class of graphs G is χ-bounded if the chromatic number of the graphs in G is bounded by some function of their clique number. We show that the class of intersection graphs of simple families of x-monotone curves in the plane intersecting a vertical line is χ-bounded. As a corollary, we show that the class of intersection graphs of rays in the plane is χ-bounded, and the class of intersection ...
متن کاملOn cycles in intersection graphs of rings
Let $R$ be a commutative ring with non-zero identity. We describe all $C_3$- and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. Also, we shall describe all complete, regular and $n$-claw-free intersection graphs. Finally, we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملIntersection graphs associated with semigroup acts
The intersection graph $mathbb{Int}(A)$ of an $S$-act $A$ over a semigroup $S$ is an undirected simple graph whose vertices are non-trivial subacts of $A$, and two distinct vertices are adjacent if and only if they have a non-empty intersection. In this paper, we study some graph-theoretic properties of $mathbb{Int}(A)$ in connection to some algebraic properties of $A$. It is proved that the fi...
متن کاملRefining the Hierarchies of Classes of Geometric Intersection Graphs
We analyse properties of geometric intersection graphs to show strict containment between some natural classes of geometric intersection graphs. In particular, we show the following properties: • A graph G is outerplanar if and only if the 1-subdivision of G is outer-segment. • For each integer k > 1, the class of intersection graphs of segments with k different lengths is a strict subclass of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017